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1 Introduction

In applied science and engineering, polynomials computation has an essential role,

since many problems can be represented as operations on polynomials. While some

of the basic operations on polynomials seem straightforward and their solutions can

be obtained easily, polynomials division (deconvolution) is one of the computational

problems. Even if one polynomial is an exact divisor of the other, the result would

not be in a polynomial form.

In practical applications, this problem becomes more obvious where the coe�cients

of the input polynomials are usually expected to have a degree of noise. This noise is

due to the rounding o� in the previous computations. As a result, the input polynomi-

als being turned into inexact polynomials. Therefore, deconvolving such polynomials

will most likely be non trivial.

Over past decades, number of studies in computer algebra have been carried out

to investigate such problem. Consequently, the interrelationship between fundamental

computations with polynomials and rational functions and computations with struc-

tured matrices has been demonstrated. Moreover, it has been shown that structured

matrices works as a bridge between computations with polynomials and numerical

matrix computations.

Various proposed methods on structured matrices involving deep mathematical

tools were found to solve several problems in these �elds. In that sense, to work more

sensibly with inexact polynomials, each polynomial problem should be translated into

the terms of a structured matrix.

This project focuses on solving the problem of two inexact polynomials deconvo-

lution when one polynomial is an exact divisor of the other. It will bene�t from the

application of structured matrices in polynomials computations. It will investigate

the use of the Toeplitz matrix as a structure matrix to represent the input data and

formulate the problem of deconvolution as a structured total least squares problem.

1.1 Aim

This project aims to consider the application of a structure preserving method

to address the problem of deconvolving two divisible polynomials, when the noise is

present in either one polynomial or in both. The following example illustrates the

main goal of this work.

Consider the exact polynomials f(x) and g(x) where g is an exact divisor of f :

f(x) = (x− 1)(x+ 3) and g(x) = (x− 1),

therefore f/g can be computed easily which is f/g = (x+ 3).
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However, in reality where the coe�cients of f and g are a�ected by the noise which

makes:

f̂ = f(x) +4f = (x− 1.02)(x+ 3.01)

and ĝ = g(x) +4g = (x− 1.002),

Thus, the result of f̂/ĝ will be a rational function.

According to the structured total least norm (STLN) method technique, correcting the

noise with the minimal perturbation on f(x) and g(x) leads to a solvable equation. In

that sense, the work will focus on computing the solution h of:

h = f̂+s
ĝ+z

,

in a polynomial form satisfying the constrain that s and z are in the possible

minimization. The strategy of the work is mainly divided into three stages.The �rst

stage is to formulate the polynomials deconvolution into a structured matrix-vector

multiplication using a Toeplitz matrix in particular.

Then, in the next stage, the structured total least norm (STLN) method will be

applied to solve the resulting least square equality problem. After that, the method

will be implemented in a MATLAB program and number of experiments will be con-

ducted to investigate to what extent the (STLN) method will overcome the problem.

1.2 Dissertation Structure

The remaining part of this dissertation is structured as follows:

� Chapter 2: Mathematical Background: This chapter introduces clear descriptions

and de�nitions for some basic mathematical concepts on polynomials and matrices.

� Chapter 3: Literature Review: This chapter presents the proposed approaches

in the previous studies to solve the least squares problem. It critically evaluates each

approach and outlines the nominated method that is used in the next chapter. In

addition, it outlines and concludes some results of previous works.

� Chapter 4: Methodology: This chapter analyzes the main problem of inexact

polynomials deconvolution. It gives a clear description on how it can be formulated

into a least squares equality (LSE) problem. It summarizes the STLN based algorithm

9
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that will be implemented

�Chapter 5: Results and Discussion: This chapter evaluates the proposed algo-

rithm. It presents the results of a number of experiments that have been carried out

on a developed MATLAB program. It critically evaluates the method performance

and the accuracy of the computational results.

� Chapter 6: Conclusion and Future Work: This chapter concludes the �nal work

with some suggestions for future work.
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2 Mathematical Background

2.1 Introduction

This chapter presents some basic mathematical concepts in polynomials that are

necessary to declare and used in the later chapters. In addition to some matrices

concepts since each polynomials operation can be translated into a matrix system.

This translation helps to address the ill posed operations in polynomials compu-

tations such as polynomials deconvolution which can be turned and formulated into

least squares problem.

The chapter �rstly, de�nes general polynomials aspects in the �rst section then the

followed section focuses on the structured matrices. Then, mathematical operations on

polynomials such as convolution and deconvolution are explained in section 2.4. The

remainder of the chapter illustrates the way of using matrices to solve linear system

equations.

2.2 Polynomials

2.2.1 Approximate (inexact) polynomials

In real applications, the polynomial's coe�cients have some error added to them.

Thus, the polynomial becomes inexact polynomial or approximate polynomial. In

practical :

f̂ = f +4f. (2.1)

2.2.2 Polynomial coe�cients norms

For each polynomial: f(x) =
n∑

k=0

akx
k and a =

[
a0 a1 . . . an

]
is a vector of its

coe�cients, it has several classes of norms, which can be de�ned as:

||a||p = (
n∑

k=0

|ai|p)1/p

In this report the ||a|| will be used as a standard for ||a||2.
2.3 Structured Matrix

2.3.1 Toeplitz Matrix

In mathematics, a Toeplitz is a matrix in which each descending diagonal from left to

right is constant. The Toeplitz matrix from a given vector a =
[
a0 a1 a2

]
:
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T (a) =


a0

a1 a0

a2 a1 a0

a2 a1

a2


2.4 Convolution and Deconvolution

2.4.1 Convolution

Convolution is a mathematical operation that takes two functions f and g to produce a

third function h which is a modi�ed version of the two input functions. Algebraically,

convolution is equivalent to polynomial multiplications.

2.4.2 Deconvolution

It is a non-trivial operation which is equivalent to polynomials division. If the ratio

f(x)/g(x) is a polynomial, a random noise in f(x) and/or g(x) makes it a rational

function. Therefore the deconvolution of two inexact polynomials is an ill-posed prob-

lem.

2.5 Representing Linear Algebraic Equations in Matrices

It has been shown that matrices provide a concise notation for representing and solving

linear equations. For example:
a1x1 + b1x2 + c1x3 = d1

a2x1 + b2x2 + c2x3 = d2

a3x1 + b3x2 + c3x3 = d3

(2.2)

The above (1) system of equations can be represented and solved by matrices as follows:

Ax = b (2.3)

Where A is the matrix of coe�cients, b is the column vector of constants and x is the

column vector of unknowns :

A =

a1 b1 c1

a2 b2 c2

a3 b3 c3



12



www.manaraa.com

bT =
[
d1 d2 d3

]
xT =

[
x1 x2 x3

]
Then to solve equation (2):

x = A−1b

Therefore, the value of x has been determined. In this work, we will use the Moore�Penrose

pseudo inverse.

2.6 Summary

In conclusion, dealing with operations on polynomials requires dealing with matrices.

The chapter declared the necessary mathematical concepts and notations related to

polynomials together with matrices. A clear explanation of how to represent equations

of polynomials as operation on matrices has been provided in the last section of this

chapter.

13

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

3 Literature review

3.1 Introduction

This chapter evaluates the di�erent proposed methods taken to address the struc-

tured total least squares approach problem. The chapter starts by explaining the

least squares problem, discussing how the problem can be extended to the di�erent

approaches.

Then, it focuses deeply on the structured Total Least Squares approach, outlining

some methods developed to address such problems. Many problems in various areas

can be formulated as a structured Total Least Squares problem, for example, sys-

tem identi�cation, computer algebra, and speech and sound processing. The chapter

concludes the computational results of the previous works that have been done an

published.

3.2 Least squares problems

The Least Squares problem (LS) involves �nding x that satis�es the following min-

imization:

minx||Ax− b|| (3.1)

in order to solve an over determined linear equation: Ax ≈ b.Many proposed

methods to solve such problems allow the noise to be added into vector b only and

assuming that the given matrix A is known without error.

However, by allowing the possibility of error in the elements of data matrix A ,we

can obtain more accurate solutions for the entire equations. This extension for the

LS problem known as total least square (TLS problem )can be stated as �nding the

vector x with the minimization:

min||4A||,||4b||||A+4A)x− (b+4b)|| (3.2)

Golub and Van Loan(1980) introduced the basic least squares problem (3.1) along

with the solution via singular value decomposition in their paper. Years later, this

solution had been generalized to overcome the problem of multivariable and non generic

cases.

Finally, the extension of TLS is the structure total least squares (STLS) which sat-
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is�es the same minimization needed in TLS while preserving the structure of matrix A.

This additional constraint plays an important role in many computer science applica-

tions such as signal processing, system identi�cation and system response prediction.

A solution to this problem will allow us to form the output polynomials without the

concerns of matrix A structure.

De Moor (1994) has mentioned various applications of the structured total least

squares problem, with an exception of the numerical solution with the help of a

Newton-type optimization method on the constrained total least squares problem.

He has also provided an outline regarding a new framework that would be helpful

in deriving numerical methods and analytical properties. He has based his approach

on the Lagrange multiplier, which yields equivalent problem termed as Reimannian

singular value decomposition.

3.3 Structured Total Least Squares problem

To date, various methods have been developed and introduced to solve STLS prob-

lems. Van Hu�el & Lemmerling (2002) described three di�erent approaches, which are

the Constrained Total Least Square algorithm (CTLS) proposed by Abatzoglou and

Mendel in 1987, the Riemannian Singular Value Decomposition (RiSVD) algorithm

by De Moor (1993, 1994) and the Structure Total Least Norm (STLN) algorithm by

Van Hu�el et al. (1996).

While all of these approaches were developed to satisfy the minimization in 3.2,

each approach has its own �eld of applications. The most signi�cant di�erence that

distinguishes the last method (STLN) and makes it straightforward, is that it basically

starts from the exact formula of the problem, while the others derive an equivalent

formulation for which each algorithm, then develop it in a quite di�erent series of

steps.

Lemmerling et al. (1996) declared CTLS approach with the number of di�erent

methods that have been used. This paper has proven the convergence of the value

obtained by using such an approach with the value obtained in solving TLS problem

with other approaches.

However, the convergence rate depends totally on which method has been selected

to solve the CTLS approach (Lemmerling et al., 1996). Abatzoglou et al. (1991)

identi�ed several advantages of applying the CTLS technique in Harmonic super-

resolution problems. Indeed, the CTLS is a useful tool in signal processing problems

where the known error present in the data matrix is algebraically associated, and there

must be a solution for that equation.

Besides these contributions, a lot of research still needs to be performed into how
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to improve the performance of that approach.

According to De moor (1994), the STLS problem is equivalent to non-linear singular

value decomposition. Then using this technique with one of the proposed methods will

result in producing the solution for the STLS problem .

It is evident the e�ciency of such an approach to solve the noisy realization prob-

lem. Furthermore, the study that has been done by (Fierro and Jiang ,2005) con�rmed

the reliability of the RiSVD approach in information retrieval applications. However,

according to (Van Hu�el et al.,1996) the result obtained by such an approach does

not guarantee the preservation of the matrix structure, which is a requirement of the

optimal solutions for STLS problems.

Rosen et al. (1996) proposed structured total least norm which is another algorithm

for calculating structured total least squares solution. This method has been applied to

solve a range of problems in various applications such as system identi�cation, speech

and audio processing and computer algebra.

The e�ciency and robustness of this algorithm in addressing the structured total

least squares problems have been proven theoretically and practically especially when

the error can occur in the input data.

The choice of STLN approach is supported by the accurate results reported in

many published papers and researches ;Winkler and Allan (2008) and (Van Hu�el et

al., 1996). STLN proved its e�cient performance in many approximate polynomials

and structured matrices applications where the STLS problems arises.

3.4 Overview of Structured Matrices Applications on polyno-

mials

In light of the previous section, STLN has been used in many di�erent applications.

For example, noise realization, image reconstruction, system identi�cation and signal

processing. This section highlights some applications.

Winkler and Allan (2008) have developed in their work a method to compute the

greatest common divisor (GCD) of two inexact polynomials. The main problem has

been formulated into STLN as follow:

min||z|| with (Ak + Ek)x = bk + hk

for some vector x,where the perturbation matrix [hk, Ek] has the same structure of

the Sylvester matrix [bk, Ak] and z is the correction vector.Thus, they was aiming to

�nd x that satis�ed the minimum perturbation in both input polynomials.After the

STLN method has been examined, an accurate results has been obtained from

di�erent test cases without needing to large number of iterations.

16
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Apart of computer algebra, the STLN method also has been used in engineering

applications such as signal processing, linear prediction and noise realization

problems. More precisely, the Hankel structure has been used in noisy realization

problem. According to (Moor B., 1994) for a given exact data a ∈ Rp+q−1by the

perturbed b ∈ Rp+q−1, the noise can be realized by solving the following

minimization: ∑p+q−1
i=1 (ai − bi)2 subject to By = 0, yty = 1,

where B is p× q Hankel matrix constructed from the elements of b.

Markovsky and Hu�el (2007) reviewed the total least squares methods in their

paper in deep discussion and a comprehensive explanation.They mentioned di�erent

applications that used di�erent structured matrices associated with their STLS for-

mulas. Conclusion of their work and the above, it is evident that STLS solutions were

the optimal solutions for many problems when its structured appropriately.

3.5 Summary

A considerable amount of literature in least squares problem has been researched.

Least squares problem can be extended into total least squares(TLS) and structured

total least squares (STLS) approaches depending on the limitation of the problem.

Each approach has its own applications and constrains. In computer algebra, poly-

nomials computations can be turned into STLS problem.

Structured matrices have been studied closely for a long time in somewhat di�erent

�elds, such as mathematics, computer science and engineering. Number of papers that

summarized these studies of the structured matrices have been reviewed in this work.

In summary, STLN that is written by (Rosen et al. ,1996) is the most appropriate

method to be used in the deconvolution problem. It will be adapted using appropriate

structure (Toeplitz structure). A full description of the proposed method considered

in the following chapter.
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4 Methodology

4.1 Introduction

This chapter explains the �rst two stages that have been clari�ed in the �rst chapter

of this dissertation. It illustrates the problem of deconvolving two inexact polynomials

and how it can be formalized into a least square problem.

Then, it provides a suggested method to construct a Toeplitz matrix that will be

used to represent the input polynomials coe�cients. Next, it describes the method

of structured total least norm(STLN) for the solution of the deconvolution problem.

Furthermore, it outlines some techniques that are used while developing the MATLAB

program.

4.2 Toeplitz matrix-vector Multiplication

Suppose that we have two polynomials f(x) and g(x) of degrees m and n respectively,

as follow :

f(x) =
∑m

i=0 aix
m−i and g(x) =

∑n
i=0 bix

n−i

and thus the polynomial

h(x) = f(x)/g(x) (4.1)

is of degree (m− n),

h(x) =
m−n∑
i=0

hix
m−n (4.2)

Then (4.1) can be written in a matrix-vector multiplication form using a Toeplitz

structure as

T (g)h = f (4.3)

where T (g)∈ R(m+1)×(m−n+1), h∈ R (m−n+1) and f∈ R(m+1) are coe�cients vectors of

polynomials h(x) and f(x)respectively.
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4 Methodology

4.1 Introduction

This chapter explains the �rst two stages that have been clari�ed in the �rst chapter

of this dissertation. It illustrates the problem of deconvolving two inexact polynomials

and how it can be formalized into a least square problem.

Then, it provides a suggested method to construct a Toeplitz matrix that will be

used to represent the input polynomials coe�cients. Next, it describes the method

of structured total least norm(STLN) for the solution of the deconvolution problem.

Furthermore, it outlines some techniques that are used while developing the MATLAB

program.

4.2 Toeplitz matrix-vector Multiplication

Suppose that we have two polynomials f(x) and g(x) of degrees m and n respectively,

as follow :

f(x) =
∑m

i=0 aix
m−i and g(x) =

∑n
i=0 bix

n−i

and thus the polynomial

h(x) = f(x)/g(x) (4.1)

is of degree (m− n),

h(x) =
m−n∑
i=0

hix
m−n (4.2)

Then (4.1) can be written in a matrix-vector multiplication form using a Toeplitz

structure as

T (g)h = f (4.3)

where T (g)∈ R(m+1)×(m−n+1), h∈ R (m−n+1) and f∈ R(m+1) are coe�cients vectors of

polynomials h(x) and f(x)respectively.
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T (g) =



b0

b1 b0
... b1

. . .
...

. . . b0

bn
. . . b1

bn
...

bn


, h =


h0

h1
...

hm−n

 and f =


a0

a1
...

an

 .

The deconvolution problem requires calculating h when f and g are given, which im-

plies �nding the least squares solution of (4.3).

4.3 Solving the Least Squares problem

4.3.1 The Moore�Penrose pseudoinverse

The simplest way to �nd the least squares solution is by using the pseudo inverse as

followss:

h = T (g)†f, (4.4)

This way will be used �rst to calculate the initial value of h.

4.3.2 The Structured Total Least Norm method

In order to apply the structure preserving method to �nd the solution for (4.3), it is

required that the coe�cients of of the input polynomials be perturbed slightly. There-

fore, the coe�cients of h(x) can be calculated more accurately. Thus, the equation

(4.3) will be written as follows

(T (g) + E(z))h = f + s, (4.5)

where E(z) ∈ R(m+)×(m−n+1) has the same structure of T (g), and the vector

s ∈ R(m+1) is the correction vector for the polynomial f .

E(z) =



z0

z1 z0
... z1

. . .
...

. . . z0

zn
. . . z1

zn
...

zn


and s =


s0

s1
...

sn

.
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Thus, the vectors z and s need to be computed. Supposing that the residual r

using an approximate solution of (4.5) is

r = r(s, z) = (f + s)− (T (g) + E(z))h, (4.6)

then

r(s+ δs, z + δz) = (f + (s+ δs))− (T (g) + E(z + δz))(h+ δh)

= r(s, z) + δs− (T (g) + E(z))δh− (δ(E(z))h,

where

δE(z) =
n∑

i=0

∂E

∂zzi
δzi. (4.7)

There exists a matrix Y (h) ∈ R(m+1)×(n+1) that satis�es the following equation:

E(z)h = Y (h)z, (4.8)

So, we can substitute (δ(E(z))h in r(s + δs, z + δz) equation with Y (h)δz, That

leads to change r to:

r(s+ δs, z + δz) = (f + (s+ δs))− (T (g) + E(z + δz))(h+ δh)

= r(s, z) + δs− (T (g) + E(z))δh− (Y (h))δz,

In order to solve (4.3) using the Newton-Raphson methods, it implies an iterative

solution for the residual

[
Y (T + E) Im+1

] δz

δh

δs

 = r, (4.9)

Hence, it is required to follow the minimization of

||
[
δz δh δs

]
||, (4.10)

Subject to
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[
Y (T + E) Im+1

] δz

δh

δs

 = r, (4.11)

That leads to least squares equality problem, which can be solved by the QR

decomposition technique. Suppose that

F = I2m+3,, G =
[
Y (T + E) Im+1

]
, y =

 δz

δh

δs

 ,
S =

 −zi
−(hi − h0)
−si

 and t = ri,

Therefore, this works considers the following LSE problem:

miny||Fy − S|| Subject to Gy = t.

That means we need to overcome the noise that turn the polynomial f/g to a rational

function. STLN method would correct the noise with minimizing the perturbation as

much as possible.

The following algorithm is generated base on STLN. Since the input of the algo-

rithm is inexact polynomials, a random noise with ratio µ will be added to f and g

�rstly. The stop condition for the iterative method is when the total norm error in

the computed solution ≤ 10−12 or after 100 iterations. The reason for choosing this

number is that no improvement will be noticed when the TN error becomes less than

10−12.

The method denotes to the corrections added to f and g with z and s respectively.

The values of these correction vectors initialized by zeros. Taking into account that z

has the same structure of T (g). As, it is clear in the algorithm, powerful mathematical

techniques will be used such as QR factorization.
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Algorithm 1 Deconvolution using QR decomposition.

Input: Inexact polynomials f(x) and g(x).
Output: The polynomial h(x) = f(x)/g(x).
Begin

1. Set z0 = 0, s0 = 0 and calculate h0from (4.4)

2. Repeat

� Compute the QR decomposition of GT ,

GT = QR = Q

[
R1

0

]
. (4.12)

� Set w1 = R−T1 ∈ R(m−n+1).

� Partition FQ as
FQ =

[
F1 F2

]
, (4.13)

where F1 ∈ R(2m+3)×(m+1) and F2 ∈ R(2m+3)×(m+2).

� Compute
w2 = F †2 (S − F1w1) ∈ R(m+2). (4.14)

� Compute the solution

y = Q

[
w1

w2

]
. (4.15)

� Set z := z + δz, h := h+ δh and s := s+ δs.

� Update E(z) and Y (h).

� Update G, S and t, then compute the residual r(z) from (4.7).

Until ||r(z)||||f+s|| ≤ 10−12.

End

4.3.3 Highlight on MATLAB code

Here are functions that are used while developing the MATLAB program. The pro-

gram takes the input polynomials in roots form. So, it is necessary to generate the

polynomial using the roots before starting the iterative method. The following func-

tion is written to accomplish this task.
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function [ p]=CreatePolynomial ( a )

[ row co l ]= s ize ( a ) ;

p=1;

for i =1:row

C=[ 1 −(a ( i , 1 ) ) ] ;
for j =1:a ( i , 2 )

p=conv (p ,C) ;

end

end

end

Moreover, the Toeplitz matrix of the vector g, should be constructed properly. The

function Toeplitz(g,m) is developed to achieve this structure.

function T = Toep l i t z ( g ,m)

n=length ( g)−1; % the degree o f g

T=zeros (m+1,m−n+1);

for k=1:1 :m−n+1
for l=k : 1 : n+k

T( l , k)=g ( l−k+1);

end

end

end

In order to create the matrix Y (h) using the vector h which satis�es E(z)h = Y (h)z,

the following MATLB function has been written.
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function Y=createY (h ,m, n)

Y=zeros (m+1,n+1);

for k=1:1 :n+1

for l=k : 1 :m−n+k
Y( l , k)=h( l−k+1);

end

end

end

4.4 Summary

In conclusion, the polynomials deconvolution problem has been analyzed and how it

can be transformed into convolution with a Toeplitz matrix form has been clari�ed.

It has been shown how it leads to least squares equality (LSE) problem. An exact

solution can be obtained with minimum perturbation by the (STLN) based algorithm

which is explained in this chapter.

The proposed algorithm has been implemented in a MATLAB program. In order

to validate the method in calculating an exact solution for the deconvolution problem,

a series of experiments on the developed software are carried out.

The computational results are summarized and evaluated in the remaining parts

of the dissertation.
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5 Results and Discussion

5.1 Introduction

To explore the e�ciency of STLN method in solving the deconvolution problem, a

MATLAB program has been developed based on the methods proposed in chapter 4.

This chapter carries out number of experiments and discusses the produced results.

It starts by explaining the test procedure and the properties that need to be inves-

tigated. Then the results will be displayed in appropriate format. Finally, it discusses

the accuracy of the results in each experiment.

5.2 Test Procedure and Experiments:

5.2.1 Test Procedure

The test procedure is mainly based on performing number of experiments. Each

experiment is run to examine a speci�c criterion of STLN and test its performance

under determined input data test case .The main criteria need to be investigated are

summarized in the following points:

� The accuracy of calculating the coe�cients of the output polynomial h in a

correct degree (m− n).

� The ability to overcome the massive degree of the noise in the input data ( when

µ is too large).

� The ability to maintain its e�ciency when the polynomial coe�cients vary in

their magnitude i.e. the distance between the polynomial roots.

� The robustness and speed of such algorithm when the input polynomials with

high degrees ( high roots multiplicities) .

In the test we will use the total norm error (TN), which is calculated in each iteration

by ||r(z)||
||f+s|| , ans the number of iterations needed to get the answer as a measurement.

Also, in some test cases the results will be compared with the simple least squares

(LS) solutions.

5.2.2 Experiment 1

The main purpose of this experiment is to make sure that the output h of the algorithm

is generated in a polynomial form with the correct degree (m− n).
Input:
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5 Results and Discussion

5.1 Introduction

To explore the e�ciency of STLN method in solving the deconvolution problem, a

MATLAB program has been developed based on the methods proposed in chapter 4.

This chapter carries out number of experiments and discusses the produced results.

It starts by explaining the test procedure and the properties that need to be inves-

tigated. Then the results will be displayed in appropriate format. Finally, it discusses

the accuracy of the results in each experiment.

5.2 Test Procedure and Experiments:

5.2.1 Test Procedure

The test procedure is mainly based on performing number of experiments. Each

experiment is run to examine a speci�c criterion of STLN and test its performance

under determined input data test case .The main criteria need to be investigated are

summarized in the following points:

� The accuracy of calculating the coe�cients of the output polynomial h in a

correct degree (m− n).

� The ability to overcome the massive degree of the noise in the input data ( when

µ is too large).

� The ability to maintain its e�ciency when the polynomial coe�cients vary in

their magnitude i.e. the distance between the polynomial roots.

� The robustness and speed of such algorithm when the input polynomials with

high degrees ( high roots multiplicities) .

In the test we will use the total norm error (TN), which is calculated in each iteration

by ||r(z)||
||f+s|| , ans the number of iterations needed to get the answer as a measurement.

Also, in some test cases the results will be compared with the simple least squares

(LS) solutions.

5.2.2 Experiment 1

The main purpose of this experiment is to make sure that the output h of the algorithm

is generated in a polynomial form with the correct degree (m− n).
Input:
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f(x) = (x− 2)2(x+ 1)3(x− 7)

g(x) = (x− 2)(x+ 1) (5.1)

.

and the noise to signal ratio µ set to 10−4.

with regard to µ,the input exact polynomials will be perturbed and become:

f(x) = 1.0001x6 − 8.0011x5 + 2.0004x4 + 36.0025x3 + 1.0002x2 − 52.0033x− 28.0034.

(5.2)

g(x) = 1.0002x2 − 1.0001x− 2.0001. (5.3)

Output:

h = 1.0001x4 − 6.9998x3 − 2.9988x2 + 19.0002x+ 14.0012. (5.4)

The above result is obtained after only 2 iterations with the total norm error =

6.1552e−16. Now, it is clear that the iterative algorithm STLN works properly and

e�ciently to produce the result of deconvolving two inexact polynomials in a poly-

nomial form and in a reasonable time. Moreover, the resulting polynomial is in the

expected degree (m− n).

5.2.3 Experiment 2

This experiment is performed to evaluate the STLN on the second criterion mentioned

in section (5.2.1). It compares the STLN based algorithm solutions with the simple

least squares solutions using the total norm error as a measure.The values of f and g in

experiment1 are repeated and the solutions are computed at 10 values of µ. It started

at 10−12 then gradually increased till 10−2. The total norm error (TN) is calculated

every time step for each approach. Then, the resulting values of TN errors are plotted.

Input:

Consider the same input data f(x) and g(x) given in experiment 1.

Output:
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Figure i:Roots with low multiplicities
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Figure 1: The e�ect of µon the total norm errors.

According to �gure 1, the TN errors for STLN method which are shown in the

lower curve, are always much less than LS solutions. For instance, when µ = 10−9,

the STLN based TN error =176e−17while LS TN error=435e−12.

Furthermore, when µ is increased, STLN method persists this massive noise and

continues minimizing the TN as much as possible. In STLN practical results, at

µ = 10−11 the TN error=188e−17 and as µ increased to 10−2,the TN error = 291e−13.

That means the huge increase in µ did not cause a big loss in STLN's e�ciency as

happened in LS solutions.

It is clear form this experiment that STLN always has the ability to provide the

optimal solutions whatever the noise in the input data.

5.2.4 Experiments 3 and 4

This experiments consider the divergence of the input polynomials roots. Each exper-

iment is run to handle a speci�c case of polynomial roots. The test case in Experiment

3 is when the roots are extremely closed while the distant roots held in experiment 4

The outputs of the experiments are grouped together and plotted in the same �gure

below.

Experiment 3 input:

f(x) = (x− 2e−3)2(x− 6e−3)3(x− 1.20)

g(x) = (x− 2e−3)2(x− 1.20)

Experiment 4 input:
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f(x) = (x− 10−3)4(x− 2)7(x+ 20)3(x− 100)2.

g(x) = (x− 10−3)2(x− 2)1(x+ 20)1.

Output:

The computed results have been plotted against the iterations.
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Figure 2: The e�ect of polynomials roots on STLN solutions at µ = 10−4.
Figure i: when the roots are nearby.
Figure ii:when the roots are distant.

Figure 2 shows how the STLN behaves at two cases of polynomials roots. As

appears in �gure 2 i, the TN error in the solution is minimized very quickly each time

step. Also, the same behavior is repeated in �gure 2ii when the roots are distant. In

addition, this desired minimization is obtained after no more than two iterations in

all di�erent cases.

So, STLN satis�ed the required minimization in a reasonable time and regardless

of the roots status. The best solution obtained was with TN error e−16when the roots

are distant.

5.2.5 Experiment 5

The goal of this experiment to explore the last criterion mentioned in section (5.2.1).

It is basically made to investigate the robustness when the multiplicities of the roots

are very high. It involved running the program with 7 di�erent values of (m,n) at

µ = 10−4. The computational results are presented in the following table.
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Example (m,n) TN error Iterations

1 2,1 2.5676e-016 2

2 6,3 1.4775e-016 3

3 10,6 4.5119e-014 3

4 14,10 8.7338e-016 4

5 20,14 1.2256e-014 8

6 23,18 1.1109e-013 12

7 30,19 5.6293e-013 15

Table 1: TN errors for STLN solutions and Iterations at µ = 10−4,m, n = degree of
f, g respectively.

Here in table 1, m,n denote the degree of polynomials f and g respectively. As

shown in this table, the STLN method converges quickly to the optimal solutions.

For example, in the third test where the (m,n) = (10, 6), only 3 iterations needed to

achieve solution with about e−14error.

All the solutions appears in table 1, have been obtained with acceptable amount

of error which did not exceed e−13in all cases. Also, it did not require more than 15

iterations each time.

Based on the previous computational results and the criteria mentioned in (5.2.1) ,

it appears that STLN is very robust and e�cient to calculate an optimal solution with

the minimum error. It is proven the STLN suitability to get accurate answer for the

ratio f/g in a polynomial form in a reasonable time. This suitability has been tested

using di�erent cases of polynomials roots taking into account the degree of the noise

in the input data.

5.3 Conclusion

This chapter was the core of the whole work. It carried out number of test exam-

ples that were used to evaluate the proposed method. It investigated and critically

evaluated using di�erent criteria.

The completed experiments were explained clarifying the aim and the input of each

experiment. The computational results that are obtained clearly shown and presented

in a suitable format.

A critical evaluation of the results is given. As a result of the previous computa-

tional results, it is shown to what extent the STLN method is powerful and su�cient.

The performance is demonstrated in di�erent cases of polynomials where the coe�-

cients are widely diverse.

Furthermore, the method has maintained its e�ciency even if the amount of the

noise is massive. It is shown its superiority when it is compared with the simple least
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squares solutions.

To sum up, the method is powerful tool to be used later in polynomials computa-

tions with di�erent matrix structures.The performance might be enhanced when the

input data is preprocessed.
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6 Conclusion and future work

This dissertation has considered one important application of the structured matrix

methods in computer algebra. In particular, the purpose of the dissertation was to

investigate the use of the STLN method on the Toeplitz matrix to address the problem

of two divisible polynomials deconvolution when the noise is added.

The procedure of addressing this issue has been performed in three main stages.

Formulating the inexact polynomials deconvolution into least squares equality (LSE)

approach was the �rst stage. It involved the use of the Toeplitz matrix to represent the

input data. The second stages involved applying an iterative algorithm based on the

STLN method using the Toeplitz matrix structure in order to �nd the exact solution

in polynomial form. It implied the use of some mathematical techniques including the

QR factorization.

After developing the MATLAB program, a number of experiments have been car-

ried out. Each experiment focused on speci�ed test cases of the input data.The com-

putational results have been evaluated and assessed based on speci�c criteria.

As a result, it has been shown the e�ciency and the accuracy of the STLN method

in �nding an exact solution of f/g when g is exact divisor of f in the presence of noise.

Finally, the STLN method needs more investigation on a range of real life applica-

tions in di�erent areas that require further study. The results can be enhanced when

the input polynomials preprocessed using speci�c concepts. Further study can be done

in case of multivariate polynomials using di�erent structured matrix.
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Finally, the STLN method needs more investigation on a range of real life applica-

tions in di�erent areas that require further study. The results can be enhanced when

the input polynomials preprocessed using speci�c concepts. Further study can be done

in case of multivariate polynomials using di�erent structured matrix.
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1 Introduction

In applied science and engineering, polynomials computation has an essential role,

since many problems can be represented as operations on polynomials. While some

of the basic operations on polynomials seem straightforward and their solutions can

be obtained easily, polynomials division (deconvolution) is one of the computational

problems. Even if one polynomial is an exact divisor of the other, the result would

not be in a polynomial form.

In practical applications, this problem becomes more obvious where the coe�cients

of the input polynomials are usually expected to have a degree of noise. This noise is

due to the rounding o� in the previous computations. As a result, the input polynomi-

als being turned into inexact polynomials. Therefore, deconvolving such polynomials

will most likely be non trivial.

Over past decades, number of studies in computer algebra have been carried out

to investigate such problem. Consequently, the interrelationship between fundamental

computations with polynomials and rational functions and computations with struc-

tured matrices has been demonstrated. Moreover, it has been shown that structured

matrices works as a bridge between computations with polynomials and numerical

matrix computations.

Various proposed methods on structured matrices involving deep mathematical

tools were found to solve several problems in these �elds. In that sense, to work more

sensibly with inexact polynomials, each polynomial problem should be translated into

the terms of a structured matrix.

This project focuses on solving the problem of two inexact polynomials deconvo-

lution when one polynomial is an exact divisor of the other. It will bene�t from the

application of structured matrices in polynomials computations. It will investigate

the use of the Toeplitz matrix as a structure matrix to represent the input data and

formulate the problem of deconvolution as a structured total least squares problem.

1.1 Aim

This project aims to consider the application of a structure preserving method

to address the problem of deconvolving two divisible polynomials, when the noise is

present in either one polynomial or in both. The following example illustrates the

main goal of this work.

Consider the exact polynomials f(x) and g(x) where g is an exact divisor of f :

f(x) = (x− 1)(x+ 3) and g(x) = (x− 1),

therefore f/g can be computed easily which is f/g = (x+ 3).

8
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However, in reality where the coe�cients of f and g are a�ected by the noise which

makes:

f̂ = f(x) +4f = (x− 1.02)(x+ 3.01)

and ĝ = g(x) +4g = (x− 1.002),

Thus, the result of f̂/ĝ will be a rational function.

According to the structured total least norm (STLN) method technique, correcting the

noise with the minimal perturbation on f(x) and g(x) leads to a solvable equation. In

that sense, the work will focus on computing the solution h of:

h = f̂+s
ĝ+z

,

in a polynomial form satisfying the constrain that s and z are in the possible

minimization. The strategy of the work is mainly divided into three stages.The �rst

stage is to formulate the polynomials deconvolution into a structured matrix-vector

multiplication using a Toeplitz matrix in particular.

Then, in the next stage, the structured total least norm (STLN) method will be

applied to solve the resulting least square equality problem. After that, the method

will be implemented in a MATLAB program and number of experiments will be con-

ducted to investigate to what extent the (STLN) method will overcome the problem.

1.2 Dissertation Structure

The remaining part of this dissertation is structured as follows:

� Chapter 2: Mathematical Background: This chapter introduces clear descriptions

and de�nitions for some basic mathematical concepts on polynomials and matrices.

� Chapter 3: Literature Review: This chapter presents the proposed approaches

in the previous studies to solve the least squares problem. It critically evaluates each

approach and outlines the nominated method that is used in the next chapter. In

addition, it outlines and concludes some results of previous works.

� Chapter 4: Methodology: This chapter analyzes the main problem of inexact

polynomials deconvolution. It gives a clear description on how it can be formulated

into a least squares equality (LSE) problem. It summarizes the STLN based algorithm

9
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that will be implemented

�Chapter 5: Results and Discussion: This chapter evaluates the proposed algo-

rithm. It presents the results of a number of experiments that have been carried out

on a developed MATLAB program. It critically evaluates the method performance

and the accuracy of the computational results.

� Chapter 6: Conclusion and Future Work: This chapter concludes the �nal work

with some suggestions for future work.

10



www.manaraa.com

2 Mathematical Background

2.1 Introduction

This chapter presents some basic mathematical concepts in polynomials that are

necessary to declare and used in the later chapters. In addition to some matrices

concepts since each polynomials operation can be translated into a matrix system.

This translation helps to address the ill posed operations in polynomials compu-

tations such as polynomials deconvolution which can be turned and formulated into

least squares problem.

The chapter �rstly, de�nes general polynomials aspects in the �rst section then the

followed section focuses on the structured matrices. Then, mathematical operations on

polynomials such as convolution and deconvolution are explained in section 2.4. The

remainder of the chapter illustrates the way of using matrices to solve linear system

equations.

2.2 Polynomials

2.2.1 Approximate (inexact) polynomials

In real applications, the polynomial's coe�cients have some error added to them.

Thus, the polynomial becomes inexact polynomial or approximate polynomial. In

practical :

f̂ = f +4f. (2.1)

2.2.2 Polynomial coe�cients norms

For each polynomial: f(x) =
n∑

k=0

akx
k and a =

[
a0 a1 . . . an

]
is a vector of its

coe�cients, it has several classes of norms, which can be de�ned as:

||a||p = (
n∑

k=0

|ai|p)1/p

In this report the ||a|| will be used as a standard for ||a||2.
2.3 Structured Matrix

2.3.1 Toeplitz Matrix

In mathematics, a Toeplitz is a matrix in which each descending diagonal from left to

right is constant. The Toeplitz matrix from a given vector a =
[
a0 a1 a2

]
:

11
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T (a) =


a0

a1 a0

a2 a1 a0

a2 a1

a2


2.4 Convolution and Deconvolution

2.4.1 Convolution

Convolution is a mathematical operation that takes two functions f and g to produce a

third function h which is a modi�ed version of the two input functions. Algebraically,

convolution is equivalent to polynomial multiplications.

2.4.2 Deconvolution

It is a non-trivial operation which is equivalent to polynomials division. If the ratio

f(x)/g(x) is a polynomial, a random noise in f(x) and/or g(x) makes it a rational

function. Therefore the deconvolution of two inexact polynomials is an ill-posed prob-

lem.

2.5 Representing Linear Algebraic Equations in Matrices

It has been shown that matrices provide a concise notation for representing and solving

linear equations. For example:
a1x1 + b1x2 + c1x3 = d1

a2x1 + b2x2 + c2x3 = d2

a3x1 + b3x2 + c3x3 = d3

(2.2)

The above (1) system of equations can be represented and solved by matrices as follows:

Ax = b (2.3)

Where A is the matrix of coe�cients, b is the column vector of constants and x is the

column vector of unknowns :

A =

a1 b1 c1

a2 b2 c2

a3 b3 c3
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bT =
[
d1 d2 d3

]
xT =

[
x1 x2 x3

]
Then to solve equation (2):

x = A−1b

Therefore, the value of x has been determined. In this work, we will use the Moore�Penrose

pseudo inverse.

2.6 Summary

In conclusion, dealing with operations on polynomials requires dealing with matrices.

The chapter declared the necessary mathematical concepts and notations related to

polynomials together with matrices. A clear explanation of how to represent equations

of polynomials as operation on matrices has been provided in the last section of this

chapter.

13
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3 Literature review

3.1 Introduction

This chapter evaluates the di�erent proposed methods taken to address the struc-

tured total least squares approach problem. The chapter starts by explaining the

least squares problem, discussing how the problem can be extended to the di�erent

approaches.

Then, it focuses deeply on the structured Total Least Squares approach, outlining

some methods developed to address such problems. Many problems in various areas

can be formulated as a structured Total Least Squares problem, for example, sys-

tem identi�cation, computer algebra, and speech and sound processing. The chapter

concludes the computational results of the previous works that have been done an

published.

3.2 Least squares problems

The Least Squares problem (LS) involves �nding x that satis�es the following min-

imization:

minx||Ax− b|| (3.1)

in order to solve an over determined linear equation: Ax ≈ b.Many proposed

methods to solve such problems allow the noise to be added into vector b only and

assuming that the given matrix A is known without error.

However, by allowing the possibility of error in the elements of data matrix A ,we

can obtain more accurate solutions for the entire equations. This extension for the

LS problem known as total least square (TLS problem )can be stated as �nding the

vector x with the minimization:

min||4A||,||4b||||A+4A)x− (b+4b)|| (3.2)

Golub and Van Loan(1980) introduced the basic least squares problem (3.1) along

with the solution via singular value decomposition in their paper. Years later, this

solution had been generalized to overcome the problem of multivariable and non generic

cases.

Finally, the extension of TLS is the structure total least squares (STLS) which sat-
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is�es the same minimization needed in TLS while preserving the structure of matrix A.

This additional constraint plays an important role in many computer science applica-

tions such as signal processing, system identi�cation and system response prediction.

A solution to this problem will allow us to form the output polynomials without the

concerns of matrix A structure.

De Moor (1994) has mentioned various applications of the structured total least

squares problem, with an exception of the numerical solution with the help of a

Newton-type optimization method on the constrained total least squares problem.

He has also provided an outline regarding a new framework that would be helpful

in deriving numerical methods and analytical properties. He has based his approach

on the Lagrange multiplier, which yields equivalent problem termed as Reimannian

singular value decomposition.

3.3 Structured Total Least Squares problem

To date, various methods have been developed and introduced to solve STLS prob-

lems. Van Hu�el & Lemmerling (2002) described three di�erent approaches, which are

the Constrained Total Least Square algorithm (CTLS) proposed by Abatzoglou and

Mendel in 1987, the Riemannian Singular Value Decomposition (RiSVD) algorithm

by De Moor (1993, 1994) and the Structure Total Least Norm (STLN) algorithm by

Van Hu�el et al. (1996).

While all of these approaches were developed to satisfy the minimization in 3.2,

each approach has its own �eld of applications. The most signi�cant di�erence that

distinguishes the last method (STLN) and makes it straightforward, is that it basically

starts from the exact formula of the problem, while the others derive an equivalent

formulation for which each algorithm, then develop it in a quite di�erent series of

steps.

Lemmerling et al. (1996) declared CTLS approach with the number of di�erent

methods that have been used. This paper has proven the convergence of the value

obtained by using such an approach with the value obtained in solving TLS problem

with other approaches.

However, the convergence rate depends totally on which method has been selected

to solve the CTLS approach (Lemmerling et al., 1996). Abatzoglou et al. (1991)

identi�ed several advantages of applying the CTLS technique in Harmonic super-

resolution problems. Indeed, the CTLS is a useful tool in signal processing problems

where the known error present in the data matrix is algebraically associated, and there

must be a solution for that equation.

Besides these contributions, a lot of research still needs to be performed into how

15
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to improve the performance of that approach.

According to De moor (1994), the STLS problem is equivalent to non-linear singular

value decomposition. Then using this technique with one of the proposed methods will

result in producing the solution for the STLS problem .

It is evident the e�ciency of such an approach to solve the noisy realization prob-

lem. Furthermore, the study that has been done by (Fierro and Jiang ,2005) con�rmed

the reliability of the RiSVD approach in information retrieval applications. However,

according to (Van Hu�el et al.,1996) the result obtained by such an approach does

not guarantee the preservation of the matrix structure, which is a requirement of the

optimal solutions for STLS problems.

Rosen et al. (1996) proposed structured total least norm which is another algorithm

for calculating structured total least squares solution. This method has been applied to

solve a range of problems in various applications such as system identi�cation, speech

and audio processing and computer algebra.

The e�ciency and robustness of this algorithm in addressing the structured total

least squares problems have been proven theoretically and practically especially when

the error can occur in the input data.

The choice of STLN approach is supported by the accurate results reported in

many published papers and researches ;Winkler and Allan (2008) and (Van Hu�el et

al., 1996). STLN proved its e�cient performance in many approximate polynomials

and structured matrices applications where the STLS problems arises.

3.4 Overview of Structured Matrices Applications on polyno-

mials

In light of the previous section, STLN has been used in many di�erent applications.

For example, noise realization, image reconstruction, system identi�cation and signal

processing. This section highlights some applications.

Winkler and Allan (2008) have developed in their work a method to compute the

greatest common divisor (GCD) of two inexact polynomials. The main problem has

been formulated into STLN as follow:

min||z|| with (Ak + Ek)x = bk + hk

for some vector x,where the perturbation matrix [hk, Ek] has the same structure of

the Sylvester matrix [bk, Ak] and z is the correction vector.Thus, they was aiming to

�nd x that satis�ed the minimum perturbation in both input polynomials.After the

STLN method has been examined, an accurate results has been obtained from

di�erent test cases without needing to large number of iterations.
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Apart of computer algebra, the STLN method also has been used in engineering

applications such as signal processing, linear prediction and noise realization

problems. More precisely, the Hankel structure has been used in noisy realization

problem. According to (Moor B., 1994) for a given exact data a ∈ Rp+q−1by the

perturbed b ∈ Rp+q−1, the noise can be realized by solving the following

minimization: ∑p+q−1
i=1 (ai − bi)2 subject to By = 0, yty = 1,

where B is p× q Hankel matrix constructed from the elements of b.

Markovsky and Hu�el (2007) reviewed the total least squares methods in their

paper in deep discussion and a comprehensive explanation.They mentioned di�erent

applications that used di�erent structured matrices associated with their STLS for-

mulas. Conclusion of their work and the above, it is evident that STLS solutions were

the optimal solutions for many problems when its structured appropriately.

3.5 Summary

A considerable amount of literature in least squares problem has been researched.

Least squares problem can be extended into total least squares(TLS) and structured

total least squares (STLS) approaches depending on the limitation of the problem.

Each approach has its own applications and constrains. In computer algebra, poly-

nomials computations can be turned into STLS problem.

Structured matrices have been studied closely for a long time in somewhat di�erent

�elds, such as mathematics, computer science and engineering. Number of papers that

summarized these studies of the structured matrices have been reviewed in this work.

In summary, STLN that is written by (Rosen et al. ,1996) is the most appropriate

method to be used in the deconvolution problem. It will be adapted using appropriate

structure (Toeplitz structure). A full description of the proposed method considered

in the following chapter.
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4 Methodology

4.1 Introduction

This chapter explains the �rst two stages that have been clari�ed in the �rst chapter

of this dissertation. It illustrates the problem of deconvolving two inexact polynomials

and how it can be formalized into a least square problem.

Then, it provides a suggested method to construct a Toeplitz matrix that will be

used to represent the input polynomials coe�cients. Next, it describes the method

of structured total least norm(STLN) for the solution of the deconvolution problem.

Furthermore, it outlines some techniques that are used while developing the MATLAB

program.

4.2 Toeplitz matrix-vector Multiplication

Suppose that we have two polynomials f(x) and g(x) of degrees m and n respectively,

as follow :

f(x) =
∑m

i=0 aix
m−i and g(x) =

∑n
i=0 bix

n−i

and thus the polynomial

h(x) = f(x)/g(x) (4.1)

is of degree (m− n),

h(x) =
m−n∑
i=0

hix
m−n (4.2)

Then (4.1) can be written in a matrix-vector multiplication form using a Toeplitz

structure as

T (g)h = f (4.3)

where T (g)∈ R(m+1)×(m−n+1), h∈ R (m−n+1) and f∈ R(m+1) are coe�cients vectors of

polynomials h(x) and f(x)respectively.
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T (g) =



b0

b1 b0
... b1

. . .
...

. . . b0

bn
. . . b1

bn
...

bn


, h =


h0

h1
...

hm−n

 and f =


a0

a1
...

an

 .

The deconvolution problem requires calculating h when f and g are given, which im-

plies �nding the least squares solution of (4.3).

4.3 Solving the Least Squares problem

4.3.1 The Moore�Penrose pseudoinverse

The simplest way to �nd the least squares solution is by using the pseudo inverse as

followss:

h = T (g)†f, (4.4)

This way will be used �rst to calculate the initial value of h.

4.3.2 The Structured Total Least Norm method

In order to apply the structure preserving method to �nd the solution for (4.3), it is

required that the coe�cients of of the input polynomials be perturbed slightly. There-

fore, the coe�cients of h(x) can be calculated more accurately. Thus, the equation

(4.3) will be written as follows

(T (g) + E(z))h = f + s, (4.5)

where E(z) ∈ R(m+)×(m−n+1) has the same structure of T (g), and the vector

s ∈ R(m+1) is the correction vector for the polynomial f .

E(z) =



z0

z1 z0
... z1

. . .
...

. . . z0

zn
. . . z1

zn
...

zn


and s =


s0

s1
...

sn

.
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Thus, the vectors z and s need to be computed. Supposing that the residual r

using an approximate solution of (4.5) is

r = r(s, z) = (f + s)− (T (g) + E(z))h, (4.6)

then

r(s+ δs, z + δz) = (f + (s+ δs))− (T (g) + E(z + δz))(h+ δh)

= r(s, z) + δs− (T (g) + E(z))δh− (δ(E(z))h,

where

δE(z) =
n∑

i=0

∂E

∂zzi
δzi. (4.7)

There exists a matrix Y (h) ∈ R(m+1)×(n+1) that satis�es the following equation:

E(z)h = Y (h)z, (4.8)

So, we can substitute (δ(E(z))h in r(s + δs, z + δz) equation with Y (h)δz, That

leads to change r to:

r(s+ δs, z + δz) = (f + (s+ δs))− (T (g) + E(z + δz))(h+ δh)

= r(s, z) + δs− (T (g) + E(z))δh− (Y (h))δz,

In order to solve (4.3) using the Newton-Raphson methods, it implies an iterative

solution for the residual

[
Y (T + E) Im+1

] δz

δh

δs

 = r, (4.9)

Hence, it is required to follow the minimization of

||
[
δz δh δs

]
||, (4.10)

Subject to
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[
Y (T + E) Im+1

] δz

δh

δs

 = r, (4.11)

That leads to least squares equality problem, which can be solved by the QR

decomposition technique. Suppose that

F = I2m+3,, G =
[
Y (T + E) Im+1

]
, y =

 δz

δh

δs

 ,
S =

 −zi
−(hi − h0)
−si

 and t = ri,

Therefore, this works considers the following LSE problem:

miny||Fy − S|| Subject to Gy = t.

That means we need to overcome the noise that turn the polynomial f/g to a rational

function. STLN method would correct the noise with minimizing the perturbation as

much as possible.

The following algorithm is generated base on STLN. Since the input of the algo-

rithm is inexact polynomials, a random noise with ratio µ will be added to f and g

�rstly. The stop condition for the iterative method is when the total norm error in

the computed solution ≤ 10−12 or after 100 iterations. The reason for choosing this

number is that no improvement will be noticed when the TN error becomes less than

10−12.

The method denotes to the corrections added to f and g with z and s respectively.

The values of these correction vectors initialized by zeros. Taking into account that z

has the same structure of T (g). As, it is clear in the algorithm, powerful mathematical

techniques will be used such as QR factorization.
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Algorithm 1 Deconvolution using QR decomposition.

Input: Inexact polynomials f(x) and g(x).
Output: The polynomial h(x) = f(x)/g(x).
Begin

1. Set z0 = 0, s0 = 0 and calculate h0from (4.4)

2. Repeat

� Compute the QR decomposition of GT ,

GT = QR = Q

[
R1

0

]
. (4.12)

� Set w1 = R−T1 ∈ R(m−n+1).

� Partition FQ as
FQ =

[
F1 F2

]
, (4.13)

where F1 ∈ R(2m+3)×(m+1) and F2 ∈ R(2m+3)×(m+2).

� Compute
w2 = F †2 (S − F1w1) ∈ R(m+2). (4.14)

� Compute the solution

y = Q

[
w1

w2

]
. (4.15)

� Set z := z + δz, h := h+ δh and s := s+ δs.

� Update E(z) and Y (h).

� Update G, S and t, then compute the residual r(z) from (4.7).

Until ||r(z)||||f+s|| ≤ 10−12.

End

4.3.3 Highlight on MATLAB code

Here are functions that are used while developing the MATLAB program. The pro-

gram takes the input polynomials in roots form. So, it is necessary to generate the

polynomial using the roots before starting the iterative method. The following func-

tion is written to accomplish this task.
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function [ p]=CreatePolynomial ( a )

[ row co l ]= s ize ( a ) ;

p=1;

for i =1:row

C=[ 1 −(a ( i , 1 ) ) ] ;
for j =1:a ( i , 2 )

p=conv (p ,C) ;

end

end

end

Moreover, the Toeplitz matrix of the vector g, should be constructed properly. The

function Toeplitz(g,m) is developed to achieve this structure.

function T = Toep l i t z ( g ,m)

n=length ( g)−1; % the degree o f g

T=zeros (m+1,m−n+1);

for k=1:1 :m−n+1
for l=k : 1 : n+k

T( l , k)=g ( l−k+1);

end

end

end

In order to create the matrix Y (h) using the vector h which satis�es E(z)h = Y (h)z,

the following MATLB function has been written.
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function Y=createY (h ,m, n)

Y=zeros (m+1,n+1);

for k=1:1 :n+1

for l=k : 1 :m−n+k
Y( l , k)=h( l−k+1);

end

end

end

4.4 Summary

In conclusion, the polynomials deconvolution problem has been analyzed and how it

can be transformed into convolution with a Toeplitz matrix form has been clari�ed.

It has been shown how it leads to least squares equality (LSE) problem. An exact

solution can be obtained with minimum perturbation by the (STLN) based algorithm

which is explained in this chapter.

The proposed algorithm has been implemented in a MATLAB program. In order

to validate the method in calculating an exact solution for the deconvolution problem,

a series of experiments on the developed software are carried out.

The computational results are summarized and evaluated in the remaining parts

of the dissertation.
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